Sébastien MICHELLAND
Docteur en informatique

sebastien.michelland@inria.fr « Nov. 1999
Site personnel : https://silent-tower.net

POSTES ET ETUDES

Centre Inria de I’Université de Rennes — Post-doc Rennes, France Nov. 2025—en cours

Laboratoire de Conception et d’Intégration des Systémes — Ph.D Valence, France « 2022-Oct. 2025
These intitulée « Compilation au-dela de la sémantique pour la sécurité matérielle ».

Ecole Normale Supérieure de Lyon — Master en Informatique Lyon, France « 2017-2022
Obtenu ma license en 2018 et mon master en 2020. La maquette couvre I'informatique théorique en général;
je me suis concentré sur les langages, la sémantique et la compilation. Cette période couvre plusieurs stages :

— University of Edinburgh — Sémantique compositionnelle pour MLIR Edinburgh, R.U. « 2022
Jai délimité une sémantique compositionnelle pour MLIR, un framework modulaire pour créer des
représentations intermédiaires type LLVM. La sémantique est basée sur des interpréteurs monadiques
et a été poussée jusqu’a I’étude de réécritures peephole.

— Verimag — Extensions de I’algorithme de cléture par congruence Grenoble, France » 2020
J ai développé des extensions a ’algorithme de cléture par congruence et implémenté la procédure de
décision qui en résulte en OCaml, destinée a servir a la tactique congruence en Coq [5, 4].

— UQAM — Etude des interactions entre les passes de LLVM Montréal, Canada « Eté 2019
Jai collecté une base de données des passes de LLVM et de leurs dépendances, et esquissé des outils
logiciels pour étudier leurs interactions pour guider le probléme d’ordonnancement de phase [6].

— Inria — Coq formalization of the dancing links algorithm Paris, France « Eté 2018
Jai prouvé l'algorithme des liens dansants en Coq et partiellement prouvé une implémentation OCaml [7].

PROJETS DE RECHERCHE

Mon travail de recherche rentre dans la catégorie générale de la spécification et compilation de programmes,
dont j’aime étudier le comportement au passage des frontieres d’abstraction. J’ai du coup travaillé a la fois
tout en bas de la pile logicielle, avec ma thése qui touche a la sécurité contre des vulnérabilités matérielles;;
et tout en haut, mon deuxiéme plus gros projet portant sur la certification d’interpréteurs abstraits spécifiés
par des sémantiques monadiques.

Theése : Compilation au-dela de la sémantique pour la sécurité matérielle

Ma thése aborde des problémes méthodologiques liés aux contremesures contre les attaques par injection
de faulte et par canaux auxiliaires. Ces attaques matérielles ont des effets logiciels complexes dont la carac-
térisation (modélisation de fautes et de canaux auxiliaires) est un art a part entiére. Crucialement, ces effets
ne peuvent pas étre transportés dans la chaine d’abstraction sans perdre en précision, ce qui signifie que

1. les contremesures doivent idéalement cibler les modéles précis, donc bas-niveau;

2. les propriétés de sécurité métier des utilisateurs, qui proviennent du code source et des contreme-
sures appliquées a différentes étapes de la compilation, doivent étre connectées au code cible et donc
préservées jusqu’a ce qu’il soit généré.

Ces points sont tous les deux subtils. Les modeles de fautes bas-niveau sont généralement analysés de fagon
empirique parce que les efforts de vérifiation formelle commencent plutdt aux langages haut-niveau, qui
s’y prétent mieux (et ces communautés s’intersectent peu). Il n’est du coup pas clair si on peut capturer

mailto:sebastien.michelland@inria.fr
https://silent-tower.net

méthodiquement des détails architecturals dans I’étude d’un programme protégé. J’ai démontré dans un
papier [2] qu’il est possible de modéliser sémantiquement une attaque de saut sur I’étape de fetch d’'un
processeur RISC-V. Ce travail a permis la conception d’une contremesure logicielle/matérielle fine dont la
correction est prouvée d’abord et testée ensuite. Ce papier est significatif dans le sens ou il connecte deux
types de communautés; d’un c6té la compilation avec la sémantique et ’analyse formelle, de 'autre la
sécurité matérielle avec les modéles de fautes précis tenant compte de la micro-architecture.

L’étape de compilation est tout aussi subtile ; pour générer du code sécurisé, le compilateur doit soit prendre
du code sécurisé en entrée, soit insérer une contremesure ; puis préserver les propriétés qui rendent ce code
« sécurisé » jusqu’au langage cible. Ces propriétés ne peuvent pas étre exprimées uniformément le long de
la chaine d’abstraction, ce qui nécessite une suite de propriétés de sécurité a chaque niveau intermédiaire,
quelque chose que je défends dans ma theése mais qui n’est sinon quasiment jamais exploré.

L’outil central produit par ce projet est Tracing LLVM, un mod LLVM léger qui fournit des outils pour la pro-
duction de code sécurisé . Son principe est de tracer des éléments spécifiques du programme source (accés
aux variables, calculs, flot de données...) durant leur compilation, tout en garantissant leur intégrité vis-
a-vis des transformations du compilateur. Cette méthode définit un périmétre dans lequel une ingénieure
sécurité peut manuellement controler la compilation, facilitant 'implémentation de contremesures.

Sémantique abstraite pour des interpréteurs monadiques (2021-2024).

J’ai congu en Rocq un framework basique pour écrire et certifier des interpréteurs abstraits pour des lan-
gages minimaux, dans le cadre du projet Vellvm [8]. Vellvim définit une sémantique dénotationnelle de
LLVM gréce a un modele sémantique appelé arbres d’interactions, qui se trouve étre exécutable. Ca ouvre
la perspective de définir une sémantique abstraite dont 'exécution constituerait un interpréteur abstrait.

J’ai montré qu’il était possible de certifier un interpréteur abstrait ainsi défini par « interprétation mona-
dique ». Cela permet d’unifier en partie les sémantiques concréte et abstraite d’'un langage et de dériver
une grande partie de la preuve de correction de 'interpréteur abstrait. L’implémentation open-source de
ce framework contient nombre de composants réutilisables qui sont applicables a plus d’un langage %.

Ce travail commencé par un stage a continué pendant environ deux ans avant d’étre publié a ICFP’24 [1].
Autres projets de recherche.

Dans un papier de 2018 a COMPAS [3] découlant d’'une expérience en cours d’architecture, j’ai testé le
design d’une ISA que minimise la bande passante mémoire. J’ai écrit un émulateur/debugger interactif?
pour le processeur fictif, qui a ensuite été utilisé plusieurs années dans un cours de compilation a 'UCBL.

OuTILS

Développement noyau embarqué sur calculatrices (2015-ongoing).

Depuis 2015 j’ai développé et maintenu un uni-noyau et un SDK pour programmer nativement sur une
douzaine de modéles de calculatrices graphiques, ce qui m’a apporté une grande expérience du développe-
ment bas-niveau. Ces machines ont déja un OS, mais mon noyau peut prendre et rendre dynamiquement
le controle du matériel via un changement de contexte similaire a un hyperviseur. Le noyau contient a date
des pilotes de modules, un allocateur mémoire, des I/O asynchrones par interruptions, un driver USB 2.0,
du debuggage a distance, et une libc C99 entre autres. Ce projet a requis pas mal de reverse-engineering de
binaires bruts d’OS pour reconstruire des documentations fermées. Plus de détails en ligne *.

1. https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-1llvim
2. https://gitlab.inria.fr/sebmiche/itree-ai

3. https://github.com/lephe/memory-light-isa

4. https://silent-tower.net/projects/gint

https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm
https://gitlab.inria.fr/sebmiche/itree-ai
https://github.com/lephe/memory-light-isa
https://silent-tower.net/projects/gint

ENSEIGNEMENT

J’ai enseigné ~180 heures a Grenoble INP-Esisar durant ma thése et créé pas mal de ressources :

Algorithmique et programmation C dans deux cours différents (CS221-L2, IN330-L3).
— Dont 3 cours magistraux avec mes ressources originales sur la gestion de la mémoire en C.
— J’ai aussi monté un projet d’émulateur RISC-V complet, dont exercices de préparation, implémentation
de référence, tests cachés, processus de notation, etc.

Programmation fonctionnelle en Haskell (CS222-L2).
— Ici j’ai réécrit les 7 sujets de TP et construit un systeme de test semi-automatique robuste aux erreurs.

Langages et compilation (CS444-M1).

Analyse de la sécurité logicielle et matérielle de systémes (0S430-M1).

CERTIFICATION/COMPETENCES

Francais : Langue maternelle

Anglais : Niveau C2 CEFR CAE 203/210 (2018), TOEFL 116/120 (2021)
Programmation C/embarquée : Avancé Noyau/userspace, LLVM en détail, Edition des liens, RE basique
Programmation fonctionnelle et théorie des types : A I'aise Cogq, Lean 4, Haskell

Et de I'expérience en : C++, administration Linux, LaTeX...

BIBLIOGRAPHIE

ARTICLES DE JOURNAUX

[1] Sébastien Michelland, Yannick Zakowski et Laure Gonnord. “Abstract Interpreters : A Monadic Ap-
proach to Modular Verification”. In : Proceedings of the ACM on Programming Languages 8.ICFP (aott
2024), p. 1-28. URL : https://hal.science/hal-04628727.

ARTICLES DE CONFERENCES

[2] Sébastien Michelland, Christophe Deleuze et Laure Gonnord. “From low-level fault modeling (of
a pipeline attack) to a proven hardening scheme”. In : Compiler Construction. Edinburgh (Scotland),
United Kingdom, mars 2024. URL : https://hal.science/hal-04438994.

[3] Florent de Dinechin, Maxime Darrin, Antonin Dudermel, Sébastien Michelland et Alban Reynaud.
“Une architecture minimisant les échanges entre processeur et mémoire”. In : ComPAS 2018 - Confé-
rence d’informatique en Parallélisme, Architecture et Systéme. Toulouse, France, juill. 2018, p. 1-8. URL :
https://inria.hal.science/hal-01959855.

WORKSHOPS, RAPPORTS, ETC

[4] Sébastien Michelland. Rapport de stage : Une procédure de décision pour relations d’équivalence. https:
//silent-tower.net/static/internship_congruence_closure.pdf. Juin 2020.

[5] Sébastien Michelland, Pierre Corbineau, Lionel Rieg et Karine Altisen. “A Decision Procedure for
Equivalence Relations”. In : Coqg Workshop 2020. Aubervilliers, France, juill. 2020. URL : https://hal.
science/hal-04880486.

[6] Sébastien Michelland. Rapport de stage : Exploration et cartographie des passes de LLVM. https://silent-
tower.net/static/internship_llvm_passes.pdf. Juill. 2019.

[7] Sébastien Michelland. Rapport de stage : Permutations et liens dansants vérifiés en CEML. https://silent-
tower.net/static/internship_dancing_links.pdf. Juill. 2018.

https://hal.science/hal-04628727
https://hal.science/hal-04438994
https://inria.hal.science/hal-01959855
https://silent-tower.net/static/internship_congruence_closure.pdf
https://silent-tower.net/static/internship_congruence_closure.pdf
https://hal.science/hal-04880486
https://hal.science/hal-04880486
https://silent-tower.net/static/internship_llvm_passes.pdf
https://silent-tower.net/static/internship_llvm_passes.pdf
https://silent-tower.net/static/internship_dancing_links.pdf
https://silent-tower.net/static/internship_dancing_links.pdf

AUTRES PUBLICATIONS CITEES POUR LE CONTEXTE

[8] Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva et Steve Zdancewic. “Modular,
Compositional, and Executable Formal Semantics for LLVM IR”. In : Proc. ACM Program. Lang. 5.ICFP
(aoGit 2021). URL : https://doi.org/10.1145/3473572.

https://doi.org/10.1145/3473572

